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Abstract
The meaning of superselection rules in Bohm–Bell theories (i.e., quantum
theories with particle trajectories) is different from that in orthodox quantum
theory. More precisely, there are two concepts of superselection rule, a
weak and a strong one. Weak superselection rules exist both in orthodox
quantum theory and in Bohm–Bell theories and represent the conventional
understanding of superselection rules. We introduce the concept of strong
superselection rule, which does not exist in orthodox quantum theory. It
relies on the clear ontology of Bohm–Bell theories and is a sharper and, in
the Bohm–Bell context, more fundamental notion. A strong superselection
rule for the observable G asserts that one can replace every state vector by a
suitable statistical mixture of eigenvectors of G without changing the particle
trajectories or their probabilities. A weak superselection rule asserts that
every state vector is empirically indistinguishable from a suitable statistical
mixture of eigenvectors of G. We establish conditions on G for both kinds of
superselection. For comparison, we also consider both kinds of superselection
in theories of spontaneous wavefunction collapse.

PACS numbers: 03.65.Ta, 03.70.+k, 11.15.−q

1. Introduction

Bohm–Bell theories are quantum theories with particle trajectories guided by the quantum
state vector |ψ〉 in such a way that at every time t the configuration Qt has probability
distribution |ψt |2. We give a detailed definition in section 2. Among these theories are
Bohmian mechanics [8, 9, 15, 18] (a theory for nonrelativistic quantum mechanics), Bell’s
jump process for lattice quantum field theory [5, 16] and ‘Bell-type quantum field theories’
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[11, 13, 14] (the generalization of both Bohmian mechanics and Bell’s process to quantum
field theory in the continuum). These theories were introduced for solving the conceptual
difficulties of quantum theory [18].

Recall that a superselection rule for a quantum observable G is, naively speaking,
the statement that G always ‘assumes a sharp value’, i.e., that wavefunctions are always
eigenfunctions of G, whereas nontrivial (coherent) superpositions of eigenfunctions of G with
different eigenvalues do not occur in nature. Since the superposition principle of quantum
theory asserts that for any two quantum states, also their complex linear combinations are
quantum states, a more careful formulation of a superselection rule asserts that one can always
replace, without loss of generality, a wavefunction by a statistical (incoherent) mixture of
eigenfunctions of G. But what exactly does that mean here, ‘without loss of generality’?
There are two possible answers, and thus two interpretations of superselection rules: a strong,
unconventional one that does not refer to observers and is available in Bohm–Bell theories but
not in orthodox quantum mechanics; and a weak, conventional one that refers to observers
and is available in both theories.

Of the two interpretations of superselection rules, we begin with describing the weak one.
It asserts that no possible experiment can distinguish between the actual wavefunction, which
could be a nontrivial superposition of eigenfunctions of G with different eigenvalues, and a
suitable statistical mixture of eigenfunctions of G [2, 21, 22]. This amounts to the statement that
not all self-adjoint operators on the Hilbert space of a system correspond to observables, or, in
other words, that some operators (those which do not commute with G) cannot ‘be measured’.
A difficulty with arguing for a weak superselection rule in any particular case is that no
criterion is known for which operators do correspond to executable experiments and which do
not; this may render the justification of a superselection rule uncertain and unsatisfactory. On
top of that, in the orthodox quantum theory, where operators as observables are introduced by
postulate, any reasoning concerning which operators correspond to observables and which do
not, is likely to have the ring of arbitrariness. In total, it is not clear on which principles a
claim of weak superselection should be based. In this respect, one is better off in Bohm–Bell
theories, in which the connection between experiments and operators is derived rather than
postulated. In section 5, we will illustrate this with a concrete example and formulate natural
conditions on G for a weak superselection rule.

But now we turn to the strong interpretation of the superselection rule for G that is available
in Bohm–Bell theories. It asserts that whatever the wavefunction ψ , there is a mixture µψ of
eigenfunctions φ of G that leads to precisely the same trajectories of all particles at all times as
ψ with the same probabilities. That is, not only are the outcomes of all experiments the same,
but even all microscopic facts about the path of every single particle. To appreciate that this
is genuinely more, note that in a Bohmian universe there are strong limitations on the access
of macroscopic observers to the details of microscopic trajectories [15], because to observe
means to influence. Since for a superselection rule in this sense it is also true that the state
vector is empirically indistinguishable from a suitable mixture of eigenvectors of G, strong
superselection is indeed stronger than weak superselection.

Here is an example, concerning a simple Bell-type quantum field theory discussed in
[12, 14]. The model, whose defining equations are given in section 3, involves two species
of particles, one fermionic and one bosonic, such that the fermions can emit and absorb
bosons. A strong superselection rule holds in this model for the fermion number operator, as
the trajectories of the particles, as well as the emission and absorption rates, depend only on
the part of the state vector ψ in the appropriate superselection sector, i.e., in the eigenspace
of the fermion number operator whose eigenvalue coincides with the number of fermions in
the actual configuration. Thus, on the level of the particle trajectories there is no difference
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between a superposition and a mixture of different fermion numbers. For more detail about
this example see section 3.

We now define strong superselection with mathematical precision. We start with a
Hilbert space H on which G is an operator; H contains, of course, all superpositions
of eigenvectors of G with different eigenvalues. For the unit sphere in H we write
S(H ) = {ψ ∈ H : ‖ψ‖ = 1}. A statistical mixture of wavefunctions is mathematically
described by a probability measure µ on S(H ).4 Let G be a self-adjoint operator with a pure
point spectrum (otherwise its eigenvectors would not span H ) and Eγ the eigenspace of G
with eigenvalue γ . Let Q be the configuration space in which the configuration Qt moves,
and H the Hamiltonian. (A typical example of the configuration space in a Bohm–Bell theory
is the set of all finite subsets of R

3, denoted by � �=(R3) = {Q ⊆ R
3 : #Q < ∞}, whose

elements represent the positions of a variable, finite number of identical particles. Generally,
we will assume that Q is a countable union of disjoint manifolds.) Abstractly, the motion (and,
possibly, creation and annihilation) of the particles is mathematically described by a stochastic
process Q = (Qt)t∈R in Q that depends on the initial state vector ψ ∈ S(H ),Q = Qψ ; the
process Qψ is characterized by its distribution P

ψ , a probability measure on the path space
Z of Q; Z is a space of mappings R → Q from the time axis to the configuration space,
representing the possible histories. For Bohmian mechanics, e.g., Z is the space of continuous
curves in Q, and for Bohm–Bell theories in general [14], due to the possibility of jumps, it is
the space of piecewise continuous curves in Q.

We define that a strong superselection rule holds for G if for every ψ ∈ S(H ) there is a
mixture µψ concentrated on the eigenvectors of G such that∫

φ∈S(H )∩∪γ Eγ

µψ(dφ)Pφ(dQ) = P
ψ(dQ). (1)

In words, the same trajectories with the same probabilities are generated by a mixture of
eigenvectors φ of G (with distribution µψ ) as by ψ . (Since the symbol P was sometimes
[13, 14] used for the distribution at time t in configuration space, we emphasize again that
here, P

ψ denotes the distribution in path space.)
The remainder of this paper is organized as follows. In section 2 we formulate

simple conditions for strong superselection. In section 3 we describe examples of strong
superselection. In section 4 we mention a link between strong superselection and determinism.
In section 5 we discuss weak superselection, including examples and conditions for it. In
section 6 we discuss superselection in theories of spontaneous wavefunction collapse. In
section 7 we conclude. Proofs are collected in the appendix.

2. Conditions for strong superselection

We can formulate natural sufficient (and presumably also necessary) conditions for a strong
superselection rule after defining more precisely what we mean by a Bohm–Bell theory.

A Bohm–Bell theory can be defined from the following structure as data [14]: a Hilbert
space H , a Hamiltonian H on H , a state vector |ψ〉 ∈ H that evolves according to the
Schrödinger equation

ih̄
d|ψt 〉

dt
= H |ψt 〉, (2)

4 The reader might think that a statistical mixture is mathematically described by a density matrix. However, while
the density matrix encodes all information relevant to the statistics of outcomes of experiments, it does not contain
enough information for the Bohmian trajectories and their statistics, as first emphasized by Bell [4].
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a configuration space Q and a projection-valued measure (PVM) P(dq) on Q acting on H that
serves as the configuration observable, i.e., the totality of all position observables. The particle
configuration follows a stochastic or deterministic process (Qt)t∈R in Q that can be defined as
follows. The evolution of Qt consists of continuous motion interrupted by stochastic jumps.
Let the Hamiltonian H possess the decomposition H = H0 +HI into a differential operator H0

(often the free Hamiltonian) and an integral operator HI (often the interaction Hamiltonian).
We assume that the operator H0 is, at every configuration q, either of the Schrödinger type,

H0 =
∑
i,j

aij (q)
∂2

∂qi∂qj

+
∑

i

bi(q)
∂

∂qi

+ V (q) (3)

with positive definite matrices aij (q) = aji(q), or of the Dirac type,

H0 =
∑

i

bi(q)
∂

∂qi

+ V (q), (4)

where bi(q) are (in every space direction) matrices of full rank on spin space (or, generally
speaking, on the value space of the wavefunction). The continuous motion of Qt is determined
by [14]

dQt

dt
= vψt (Qt) with vψ · ∇f (q) = Re

〈ψ |P(dq) i
h̄

[H0, F ]|ψ〉
〈ψ |P(dq)|ψ〉 ∀f ∈ C∞

0 (Q), (5)

where C∞
0 (Q) denotes the space of all smooth functions f : Q → R with compact support,

and the operator F is the function f of the configuration observable P(dq), which means that

F =
∫
Q

f (q)P (dq). (6)

(On an L2 space with its natural PVM, this is the multiplication operator by the function f .)
The continuous motion is interrupted by stochastic jumps q ′ → q that occur with rate

σψt (dq|q ′) =
[

2
h̄

Im〈ψt |P(dq)HIP (dq ′)|ψt 〉
]+

〈ψt |P(dq ′)|ψt 〉 , (7)

where x+ = max(x, 0). For a detailed discussion of this process, see [14].

Proposition 1. Let G be a self-adjoint operator with a pure point spectrum. In Bohm–Bell
theories as defined above, a strong superselection rule holds for G if

G is a function g : Q → R of the configuration observable P(dq), (8a)
and

[G,H ] = 0. (8b)

(All proofs are postponed to the appendix.) Furthermore and more explicitly, under the
conditions (8) we have:

(a) [G,H0] = 0 and [G,HI ] = 0.
(b) The value γ = g(Qt) is an eigenvalue of G, as, in fact, the only values that the function

g can assume are the eigenvalues of G.
(c) The function g is constant on every connected component of Q, as a consequence of

[G,H0] = 0. (The connected components of the set Q are defined by the property that
two points lie in the same connected component whenever there is a continuous path from
one to the other. For example, the connected components of � �=(R3) are the n-particle
sectors for n = 0, 1, 2, . . . , where the n-particle sector is the set of all n-element subsets
of R

3, �n(R
3) = {Q ⊆ R

3 : #Q = n}.)
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(d) With probability one, g(Qt) is a conserved quantity, i.e., this value is time-independent, or
constant along the trajectory t �→ Qt . This is a trivial consequence of (c) if the trajectory
is continuous, but it holds as well for the stochastic jumps obeying (7). Since g(Qt) can
be regarded as ‘the actual value of the observable G,’ we have conservation laws on both
levels, that of operators and that of the actual configuration.

(e) Parts of the state vector ψt are irrelevant for the time evolution of the configuration Qt ;
indeed,

the evolution of Qt depends only on PG(γ )ψt , (9)

where PG(γ ) denotes the projection to Eγ , the eigenspace of G corresponding to the
eigenvalue γ . We use the notation

ψγ := PG(γ )ψ

‖PG(γ )ψ‖ (10)

for the (renormalized) component with eigenvalue γ . Note that, by (8), PG(γ )ψt =
(PG(γ )ψ)t and thus (ψt )

γ = (ψγ )t . If the evolution of Qt is deterministic, a case
in which Qt is a function of the initial state vector ψ0 and the initial configuration
Q0,Qt = Qt(ψ0,Q0), (9) means that Qt = Qt

(
ψ

γ

0 ,Q0
)
.

(f) Also the probability distribution of Qt (conditional on the value γ ) is unchanged, i.e.,

P
ψγ

(Qt ∈ dq) = P
ψ(Qt ∈ dq|g(Qt) = γ ). (11)

In fact, if ψ can be written as a function on configuration space then the left-hand side is∣∣ψγ
t (q)

∣∣2
dq and the right-hand side is, using the notation 1B(q) for the indicator function

of the set B which is 1 for q ∈ B and 0 otherwise,

‖PG(γ )ψt‖−21{g=γ }(q)|ψt(q)|2 dq.

(g) The mixture µψ consists of

the state vectors ψγ with probabilities ‖PG(γ )ψ‖2, (12)

and has density matrix

ρψ =
∑

γ

PG(γ )|ψ〉〈ψ |PG(γ ). (13)

Proposition 2. A set of conditions equivalent to (8) is

G is a function g : Q → R of the configuration observable P(dq). (14a)

With probability one, g(Qt) is a conserved quantity. (14b)

Since we could not think of any counterexample, we conjecture that the conditions (8),
respectively (14), are not only sufficient but also necessary for strong superselection.



15408 S Colin et al

3. Examples

Let us consider an explicit example: a simple Bell-type quantum field theory discussed in
detail in [14], with two particle species, one fermionic and one bosonic; for simplicity, both
species are scalar (spin zero). The Hilbert space H is the tensor product of a fermionic and a
bosonic Fock space, and the Hamiltonian is given by

H =
∫

d3k ωf(k)a∗
f (k)af(k) +

∫
d3k ωb(k)a∗

b(k)ab(k)

+
∫

d3x a∗
f (x)

(∫
d3y ϕ(x − y)(a∗

b(y) + ab(y))

)
af(x). (15)

Here a∗ and a are the creation and annihilation operators, either for the fermions or for the
bosons depending on the subscript and either in the momentum representation or in the position
representation depending on the argument k or x,y; ω(k) is the dispersion relation (either
for the fermions or for the bosons depending on the subscript), which we take, for simplicity,
to be the nonrelativistic one, ωi(k) = h̄2k2/2mi, i = f, b; and ϕ(x) is a continuous function
strongly peaked at the origin that serves for regularizing the Hamiltonian. Then H0 is the sum
of the first two integrals of (15), and HI is the third. The configuration space is

Q = � �=(R3) × � �=(R3), (16)

where the two factors in the Cartesian product correspond to the fermions and the bosons,
respectively, and the symbol � �= was defined in section 1. As a consequence of ωi(k) =
h̄2k2/2mi,H0 is in the position representation a differential operator of the Schrödinger
type (3); indeed, at a configuration q with Nf fermions and Nb bosons, H0 acts as [12]

− h̄2

2mf

Nf∑
k=1


f,k − h̄2

2mb

Nb∑
k=1


b,k, (17)

with 
f,k and 
b,k the Laplacians in the kth fermion/boson coordinate.
The laws governing the particles in this model are given by equations (5) and (7). In

this model, finitely many particles move in R
3, each of them either a fermion or a boson, and

every fermion can emit a boson, thus increasing the number of particles by one. The emission
event occurs spontaneously, that is, stochastically with a rate given in terms of the state vector.
Furthermore, every fermion can spontaneously absorb a boson when it has come close enough.

A strong superselection rule holds here for the number of fermions, corresponding to
g(Q) = g(Qf,Qb) = #Qf . Condition (8b) is easy to check. Indeed, the fermion number is
conserved, as it changes neither at boson emission or absorption nor during the mere motion
of particles. As a consequence, it is only the sector of Hilbert space corresponding to the
actual fermion number that is relevant to the behaviour of the particles. In more detail, we can
decompose the Hilbert space into particle-number sectors,

H =
∞⊕

Nf=0

∞⊕
Nb=0

H (Nf ,Nb), (18)

where H (Nf ,Nb) is the space of states with Nf fermions and Nb bosons; of the parts ψ(Nf ,Nb) of
the state vector ψ that lie in H (Nf ,Nb), only those with Nf = #Qf govern the behaviour of the
particles. (Indeed, when this model was first described in [12], the remainder of the Hilbert
space was left out right from the start, taking instead H = ⊕∞

Nb=0H
(Nf ,Nb) with Nf a fixed

number.)
Another example is provided by a Bell-type version of a simple quantum field

theory described in detail in [14], involving a second-quantized Dirac field in an external
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electromagnetic field and featuring electron–positron pair creation and annihilation. The
configuration space is again of the form (16), with the first factor now corresponding to
electrons and the second to positrons. In this model, a finite number of particles move in R

3,
and each of the particles is identified as either an electron or a positron. (Suitable conditions
are assumed of the external field that ensure that the number of particles stays finite for all
times.) Creation events, at which the number of particles increases by two (one electron and
one positron), occur spontaneously, that is, stochastically with rates determined by the state
vector and the external field. Similarly, annihilation events can occur whenever an electron
and a positron are sufficiently close to each other. A strong superselection rule holds here for
the total charge, i.e., the number of positrons minus the number of electrons.

A similar example is provided by a Bell-type version of quantum electrodynamics outlined
in [10, 11], involving infinitely many particles (electrons of positive or negative energy). In
this model, the Dirac sea is taken literally, so that what is usually regarded as the vacuum
state is associated with infinitely many electrons of negative energy (with actual positions);
pair creation, in contrast, is not to be taken literally but corresponds to the excitation of a
negative energy electron to positive energy. In fact, in this model no particle is ever created
or annihilated, and consequently, the total particle number, or, equivalently, the total charge,
is conserved (after subtracting an infinite constant). Thus, the total number or total charge
operator (after subtracting an infinite constant) is strongly superselected.

As an example of an operator that satisfies (8b) but not (8a), and in fact is not strongly
superselected, consider, in Bohmian mechanics with Q = R

d,H = L2(Q),HI = 0, and
H0 = − h̄2

2m
∇2 + V with V (−q) = V (q), the parity operator

Gψ(q) = ψ(−q) (19)

whose eigenspaces are the even functions (γ = 1) and the odd functions (γ = −1). Indeed,
G is not strongly superselected because the particle velocities generically depend both on the
even and the odd part of the wavefunction.

It may be useful to have an example of strong superselection involving only Bohmian
mechanics. The primary examples of superselection rules, of course, arise from quantum field
theory, and not from N-particle quantum mechanics, and that is why the following example
from quantum mechanics is slightly artificial. We consider Bohmian mechanics in a 3-space (a
Riemannian 3-manifold) C1 ∪ C2 with two connected components C1 and C2, corresponding
to Q = (C1 ∪C2)

N . This situation can be thought of as arising in the following two ways. We
can first regard this as an effective description in the presence of an infinitely high potential
barrier separating the regions C1 and C2 of R

3. Alternatively, suppose the geometry of
spacetime on a cosmological level was such that, in a suitable space + time splitting, 3-space
evolves from approximately a 3-sphere to approximately two 3-spheres; that is, spacetime has
an upside-down ‘pair of pants’ topology. Then, from some time onwards, 3-space has two
connected components, C1 and C2. Let G be the number of the component in which particle
1 is, corresponding to g(q) = g(q1, . . . , qN) = 1{q1∈C1} + 2 · 1{q1∈C2}. Then G is strongly
superselected, as it satisfies (14).

4. Determinism

There is a link between superselection rules and determinism: in a deterministic Bohm–Bell
theory, the total number of particles is always strongly superselected.

To begin with, a Bohm–Bell theory is deterministic if and only if all jump rates vanish,
σψ(dq|q ′) = 0 for all ψ . The following proposition tells us when this happens.
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Proposition 3. A Bohm–Bell theory is deterministic if and only if HI commutes with the
configuration observable,

[HI , P (B)] = 0 ∀B ⊆ Q. (20)

Since in a Bohm–Bell theory, every point in configuration space corresponds to a particle
configuration, the total number of particles is a function g of the configuration and is
constant on every connected component of configuration space. In a deterministic Bohm–
Bell theory, since Qt moves continuously, the total number of particles g(Qt) is conserved,
satisfying (14b). Thus, the corresponding operator G is strongly superselected, and indeed
[G,H0] = 0 = [G,HI ].

An example of a deterministic model is the Bell-type quantum electrodynamics with
infinitely many electrons [10, 11] that we have already mentioned, with strongly superselected
charge operator.

5. Weak superselection

The concept of weak superselection is based on what we can macroscopically observe, and thus
inherits the fuzziness associated with the notions ‘we’, ‘macroscopic’ and ‘observe’. Still, and
in a way surprisingly, we can formulate precise conditions sufficient for weak superselection,
and prove them in the context of Bohm–Bell theories. We begin with an example.

Which operators on the Hilbert space of a system correspond to experiments that we can
perform on the system depends on which interactions we can arrange between the system and
the apparatus. Here is a concrete example of such a limitation: spin could not be ‘measured’
if there were no magnetic fields.

As an explicit model in the framework of Bohm–Bell theories, consider a nonrelativistic
world with N spin-s particles in R

3 in which the only potentials are Coulomb potentials: that
is, H = L2(R3N, (C2s+1)⊗N) with the natural configuration observable corresponding to the
configuration space Q = R

3N , and

H = −
N∑

i=1

h̄2

2mi

∇2
i +

∑
i<j

eiej

|xi − xj | (21)

with mi and ei the mass and the charge of the ith particle. The particle trajectories are given
by Bohmian mechanics, with law of motion

dQi

dt
= h̄

mi

Im
ψ∗∇iψ

ψ∗ψ
(Q1, . . . ,QN), (22)

where φ∗ψ denotes the inner product in spin space (C2s+1)⊗N . Equation (22) is the special
case of (5) with H given by (21) and the natural PVM on R

3N . In such a world, all observables
that one can ‘measure’ on a system of n particles act trivially on the spin degrees of freedom,
i.e., they are of the form A = Apos ⊗ 1spin, where Apos acts on L2(R3N, C) (the Hilbert space
of the position degrees of freedom), and 1spin is the identity on (C2s+1)⊗N (the spin space).
To see this, we may exchange the ‘up’ and ‘down’ components of one particle (a procedure
corresponding to a unitary operator U = 1pos ⊗ Uspin on H ) and observe in (22) that Uψ

leads to the same trajectories (and the same probabilities) as ψ since permutation of spin
components does not change the velocity and U commutes with H. Therefore, it is impossible
to distinguish the two spin components on the basis of any information about the particle
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trajectories, and thus impossible to perform a ‘spin measurement’5. As a consequence, a
weak superselection rule holds for every spin matrix: superpositions of spin eigenstates are
empirically indistinguishable from statistical mixtures of spin eigenstates.

The abstract structure of this example is as follows. Consider a model world with Hilbert
space H and Hamiltonian H, and a subsystem ‘sys’ on which its environment ‘env’ performs
experiments. Mathematically, let H = Hsys ⊗ Henv and

H = Hsys ⊗ 1env + 1sys ⊗ Henv + Hint, (23)

where Hint is the interaction between ‘sys’ and ‘env.’ (Note that the operator G need not be
an observable. Indeed, in the example above, G is a Pauli spin matrix.)

Proposition 4. Let G be a self-adjoint operator on Hsys with a pure point spectrum. In
Bohm–Bell theories, a weak superselection rule holds for G if

[G,Hsys] = 0 = [G ⊗ 1env,Hint]. (24)

Here is another, alternative, criterion, which does not presuppose a division into system
and environment.

Proposition 5. Let G be a self-adjoint operator on H with a pure point spectrum. In
Bohm–Bell theories, a weak superselection rule holds for G if

[G,P (B)] = 0 ∀B ⊆ Q, (25a)

[G,H ] = 0. (25b)

Let us compare the two criteria. It may seem surprising that no commutation between G
and the configuration observable is required in proposition 4: after all, a weakly superselected
operator would be expected to commute with all observables (even though this does not,
perhaps, strictly follow from the definition). The answer is that, as a consequence of
the commutation with Hint, in practice G does commute with P(dq), or at least with the
‘macroscopic configuration observable’, obtained by suitably coarse-graining P(dq). (In the
latter case, the name ‘configuration observable’ for P(dq) would not be quite appropriate
because it would not be fully observable.) To be sure, there are mathematical examples
of operators Hint (such as Hint = 0) for which not even the macroscopic configuration is
observable, but that does not happen in practice.

Which operators are observable and which are not, though according to the orthodox spirit
it may have to be postulated, comes out of an analysis of the interaction between the system
and its environment. This is exactly what we will do in the proof of proposition 4, but the
same analysis can be done without Bohmian mechanics if one is willing to accept a certain
gap in the analysis, corresponding to the quantum measurement problem. This attitude lies
somewhere between orthodox quantum mechanics and Bohm–Bell theories and is typical of
the ‘decoherence’ approach.

A surprising trait of proposition 5 is that it does not require a splitting of the world into
system and environment (or apparatus or observer); indeed, G can be an operator on the entire
world, e.g., the total charge of the universe. The orthodox formalism, in contrast, always
assumes such a splitting, with the funny consequence that an observer cannot measure, e.g.,

5 To be sure, a wavefunction that is a superposition of ‘up’ and ‘down’ can lead to trajectories that would not arise
from either a pure spin-up or a pure spin-down wavefunction; that is why this example is not an example of a strong
superselection rule.
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her own body weight. Thus, the condition (25) cannot be derived from orthodox quantum
theory, but can from Bohm–Bell theories where no such difficulty arises. This circumstance
is particularly relevant since the prime examples of superselection rules concern the entire
universe, such as total charge or total baryon number. To be sure, we have not found the
condition (24) in the literature either, but we expect it may well exist somewhere.

It could be that (25a), given (25b), is not merely sufficient but also necessary for weak
superselection. (In fact, if (25a) is violated then at least the obvious mixture (12) leads to a
different distribution of the configuration, which should in principle be observable.) If this is
the case then every weak superselection rule with (25b) that has been empirically obtained or
confirmed (such as, e.g., the charge of the universe, or its baryon number) restricts the possible
choices of the configuration observable P(dq). That gives us a way of selecting P(dq) in
cases in which different choices are possible.

Proposition 5 expresses how the Hamiltonian and the position operators determine weak
superselection rules. Combining it with Noether’s theorem, we obtain as a corollary that
every continuous symmetry that leaves both the Hamiltonian and the position operators
invariant is generated by a weakly superselected operator. Examples of this situation are
gauge symmetries, replacing the field operator �(x) by eiθ�(x), which give rise to the weak
superselection of the corresponding charge operator.

It is worth noting a major difference between the (weak or strong) superselection rules
we are dealing with and the so-called environment-induced superselection rules [19], which
is a more approximate concept: while environment-induced superselection makes it difficult
to see interference between different sectors, weak superselection makes it impossible.

Let us turn to another example, similar to the world without magnetic fields considered
in the beginning of this section: a world in which magnetic fields can point only in the z

direction. Then σz, the z component of spin, can ‘be measured’, but no other spin component
can. Furthermore, σz is weakly superselected (by either proposition 4 or 5), but no other spin
component is. Moreover, σz is not a function of the configuration observable, and indeed
it is not strongly superselected since the velocities of the particles generically depend both
on the spin-up and the spin-down amplitude of the wavefunction. For comparison, in the
model without magnetic fields, no spin component can ‘be measured’, every spin component
is weakly and none strongly superselected.

Note that a physicist living in the example world with all magnetic fields along the z axis
may conjecture from her experiences that the spin-up and spin-down parts of the wavefunction
correspond to two distinct species of particles, which can be expressed mathematically by
taking as the configuration space, instead of R

3N = (R3)N ,

Q = ({up, down} × R
3)N = Qspin × R

3N, (26)

where Qspin = {up, down}N is a discrete set with 2N elements. The physicist would be led
to a different Bohmian theory, physically different though empirically indistinguishable from
the one with Q = R

3N , in which the velocity of a particle depends only on the part of the
wavefunction corresponding to its ‘actual spin’. In this Bohmian theory, the operator σz is, in
fact, strongly superselected. This example illustrates that it may depend on the choice of the
configuration observable P and the configuration space Q (and thus on the ontology) whether
a given operator G is strongly superselected or not.

6. GRW

Another approach besides Bohm–Bell theories providing quantum theories without observers
is based on the assumption of spontaneous collapses of the wavefunction [3]. The best-known
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model of this kind is due to Ghirardi, Rimini and Weber (GRW) [6, 17], designed for
nonrelativistic N-particle quantum mechanics. This model has much in common with
Bohm–Bell theories [1], which makes it interesting to compare the status of superselection
rules. In particular, the GRW model possesses a notion of strong superselection, whose
relevance, however, depends on the choice of primitive ontology [1], i.e., of what should be
regarded as the constituents of reality that, say, tables and chairs are made of. The primitive
ontology of Bohm–Bell theories, for example, is formed by the particle trajectories. The GRW
model allows several choices of primitive ontology. With the ‘flash’ ontology, all examples
of superselection we know are examples of strong superselection, whereas with the ‘matter
density’ ontology, all examples we know are examples of weak superselection.

The version ‘GRWf’ [1, 6] is based on the flash ontology. In this version, the
primitive ontology is formed by discrete spacetime points called ‘flashes’ (the centres of
the wavefunction collapse), and the path space we used in Bohm–Bell theories is replaced by
the space Z of all N-tuples (S1, . . . , SN) of discrete subsets of space-time, Si being the set of
all flashes associated with particle number i. The history of a GRWf world corresponds to one
element of Z , chosen at random according to some probability measure P

ψ on Z depending on
the initial wavefunction ψ . In this abstract terminology, the definition of strong superselection
around equation (1) can be adopted without change. And indeed, a strong superselection rule
holds in essentially the same cases as in Bohmian mechanics; we now formulate a sufficient
condition.

Following [20], the mathematical structure of a GRW-type theory with flash ontology
is defined in terms of a Hamiltonian H; the flash rate operators (x),x ∈ R

3, a family
of positive operators (in the original GRW model, (x) is the multiplication operator by a
Gaussian centred at x); and a vector ψ in Hilbert space with ‖ψ‖ = 1; by setting the joint
probability distribution density for the first n flashes at space-time points (x1, t1), . . . , (xn, tn)

equal to

P
ψ
n (x1, t1, . . . ,xn, tn) = ∥∥(xn)

1/2Wtn−tn−1 · · · (x1)
1/2Wt1−t0ψ

∥∥2
(27)

with Wt = exp
(− i

h̄
H t − 1

2

∫
d3x (x)t

)
for t � 0 and Wt = 0 for t < 0.

Proposition 6. Let G be a self-adjoint operator with a pure point spectrum. In GRW-type
theories with flash ontology as defined above, a strong superselection rule holds for G if

[G,(x)] = 0 ∀x ∈ R
3, (28a)

[G,H ] = 0. (28b)

As an example, consider the quantum field theory from the beginning of section 3, for G
the total fermion number operator, and for (x) the (fermion + boson) particle number density
operators, smeared out by convolution with a Gaussian. Then [G,H ] = 0 and [G,(x)] = 0
(since all number operators commute with each other), so that proposition 6 applies. As
another example, consider the example from the last paragraph of section 3 supposing that
3-space has two connected components C1 and C2 due to nontrivial cosmology. Take G
again to be the number of the component containing particle 1 and (x) the multiplication
operator by a Gaussian centred at x, which we take to be zero on C2 if x ∈ C1 and vice versa.
Then (28) is satisfied. As further examples, consider the two examples of section 5: a world
without magnetic fields (or with magnetic fields only in the z direction), and G any spin
component operator (respectively the z component). Given that (x) is the multiplication
operator by a Gaussian centred at x (times the identity in spin space), these examples are now
cases of strong (instead of weak) superselection, since G commutes with (x).
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This situation in GRWf should be contrasted with the alternative version ‘GRWm’
[1, 3] that is based on the matter density ontology. In this version, the primitive ontology is a
continuous distribution of matter in 3-space with density given by

m(x, t) = 〈ψt |(x)|ψt 〉, (29)

where

ψt = Wt−tn(xn)
1/2Wtn−tn−1 · · ·(x1)

1/2Wt1−t0ψ∥∥Wt−tn(xn)1/2Wtn−tn−1 · · ·(x1)1/2Wt1−t0ψ
∥∥ (30)

if n collapses occurred between t0 and t and were centred at (x1, t1), . . . , (xn, tn). The path
space is replaced by a space Z of real-valued functions m(·) on space-time. Each element
m(·) represents the matter density of a certain history, and again, the initial wavefunction
ψ determines the probability distribution P

ψ on Z , this time the probability distribution of
the random function m(·). Thus, again, the definition of strong superselection around (1)
is meaningful. However, in GRWm strong superselection presumably never holds. To see
why, consider again the example in which 3-space C1 ∪ C2 is not connected: during the very
short period before the first collapse, both parts PG(γ )ψ of the wavefunction contribute to
the matter density. This becomes particularly clear when there is only one particle, N = 1:
then, for every eigenfunction ψγ , mψγ

(·) vanishes on one component of 3-space, but mψ(·)
typically does not before the first collapse. An essential difference here between the GRWm
and GRWf versions is that in the GRWm model the matter is supposed to exist for all times,
while in the GRWf model space is empty at almost every time, and it is only at the instants of
collapses that matter exists—in the form of flashes.

Concerning weak superselection, the concept is, of course, meaningful as well in the
GRW model, and the model allows, like Bohm–Bell theories, us to derive which operators are
observables. Since GRWm is empirically equivalent to GRWf [1], weak superselection holds
in GRWm whenever it holds in GRWf, and thus in particular when strong superselection holds
in GRWf, in particular under condition (28). This includes all examples mentioned above as
examples of strong superselection in GRWf.

7. Conclusions

We have formulated two clear senses in which an operator G can fulfil a superselection rule;
there may exist further senses, perhaps more vague ones. The stronger sense that we have
defined is grounded in the ‘primitive ontology’: the particle trajectories in Bohm–Bell theories
(and the flashes or matter density in the GRW model, see section 6). In particular, whether
or not a strong superselection rule holds depends on the choice of the primitive ontology.
The weaker sense is grounded in the impossibility of experimental distinction between ψ and
µψ , and thus in vague notions such as ‘we’, ‘macroscopic’ and ‘observe’. Still, when these
notions get based in turn on a clear primitive ontology, one can prove weak superselection
under suitable conditions.

For both weak and strong superselection of an operator G we have formulated precise
conditions on G, the Hamiltonians, and the configuration observable. One of our criteria
implies that every joint symmetry of the Hamiltonian and the configuration observable, such
as a gauge symmetry, gives rise to a weak superselection rule.

Conversely, an empirically obtained weak superselection rule for the operator G
can suggest a choice between several possible configuration observables, in two ways:
firstly, some choices may violate the weak superselection of G (the relevant condition is
presumably (25a)); thus, the weak superselection of G can be an easy test of the empirical
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adequacy of a given Bohm–Bell model. Secondly, some choices may imply weak but not
strong superselection of G; to the extent that one thinks of the superselection rule for G as not
merely apparent but fundamental, these choices appear less plausible.

Appendix

Proof of proposition 1. We begin by proving the statements (a)–(f) of section 2.

(a) Since the Hamiltonian is assumed to be of the form H = H0 + HI with H0 given by (3)
or (4) and HI an integral operator, i.e.,

HIψ(q) =
∫
Q

dq ′K(q, q ′)ψ(q ′), (A.1)

one computes that the commutator of the Hamiltonian with

G =
∫
Q

g(q)P (dq) (A.2)

is given by

[H,G]ψ(q) =
∑

i

bi(q)
∂g

∂qi

ψ(q) +
∑
i,j

aij (q)
∂2g

∂qi∂qj

ψ(q) +
∑
i,j

2aij (q)
∂g

∂qi

∂ψ

∂qj

+
∫
Q

dq ′K(q, q ′)(g(q ′) − g(q))ψ(q ′) = 0. (A.3)

This implies K(q, q ′) = 0 whenever g(q ′) �= g(q) because we can choose ψ so that it
vanishes identically outside an arbitrarily small neighbourhood of q ′ (not containing q, so
that the first three terms on the right-hand side do not contribute). Therefore, [HI ,G] = 0,
and thus also [H0,G] = 0.

(b) Observe from (A.2) that the spectral decomposition of the self-adjoint operator G
corresponds to the PVM on R acting on H given by

PG(·) = P(g−1(·)). (A.4)

This implies that the eigenvalues of G are those γ ∈ R for which g−1(γ ) is not a P-null
set. Since changes of g on P-null sets do not change G, we can choose g so that it assumes
only eigenvalues of G.

(c) Since [H0,G] = 0 and this commutator is given explicitly by the first line of (A.3), one
can read off that

∇g = 0. (A.5)

Indeed, for H0 of the Schrödinger type (3) we can choose a ψ with ψ(q) = 0 and ∇ψ(q)

any desired (complex) vector. Since the matrix aij is of full rank, ∇g must vanish at
q. For H0 of the Dirac type (4), we can choose for any desired direction n = (ni) in
configuration space a ψ such that

∑
i nibi(q)ψ(q) �= 0 since

∑
i nibi(q) is a matrix of

full rank; thus the derivative of g in the direction n must vanish.
From (A.5) it follows that g is constant over every connected component of the

configuration space Q.
(d) Note that g(Qt) could change with time in two ways: by continuous motion of Qt , or

by a jump. By continuous motion Qt cannot leave a connected component of Q, on
which, however, g is constant. Alternatively and more directly from [H0,G] = 0, we can
compute that

dg(Qt)

dt
= vψ · ∇g(Qt) = Re

〈ψ |P(dq) i
h̄

[H0,G]|ψ〉
〈ψ |P(dq)|ψ〉

∣∣∣∣
q=Qt

= 0. (A.6)
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Let us next consider the stochastic jumps. The claim is that those jumps q ′ → q that
would change the value of g, i.e., those with g(q) �= g(q ′), have zero rate and thus do not
occur. To see this, recall that the spectral PVM of G is given by (A.4). Now let B,B ′ ⊆ R

be disjoint intervals with g(q) ∈ B and g(q ′) ∈ B ′; then PG(B)HIPG(B ′) = 0 because
every spectral projection PG(B) of G commutes with HI , and PG(B)PG(B ′) = 0 by the
disjointness. Thus,

σ(dq|q ′) = [ 2
h̄

Im〈ψ |P(dq)HIP (dq ′)|ψ〉]+

〈ψ |P(dq ′)|ψ〉 = 0, (A.7)

which is what we wanted to show.
(e) To arrive at (9), we need to check that the velocity vψ and the jump rate σψ do not change

when we replace ψ by ψγ = NPG(γ )ψ with normalizing constant N = 1/‖PG(γ )ψ‖.
Note first that PG(γ ) = P(g−1(γ )) and thus, if g(q) = γ, PG(γ )P (dq) = P(dq).
Therefore, 〈ψγ |P(dq) = N〈ψ |P(dq) and 〈ψγ |P(dq)|ψγ 〉 = N2〈ψ |P(dq)|ψ〉. Since
the operator F in (5) and PG(γ ) are both functions of P, they commute; by (a), also H0

and PG(γ ) commute. Therefore, 〈ψγ |P(dq) i
h̄

[H0, F ]|ψγ 〉 = N2〈ψ |P(dq) i
h̄

[H0, F ]|ψ〉,
and so vψγ = vψ .

Similarly, if g(q) = γ = g(q ′), P (dq ′)PG(γ ) = P(dq ′). Therefore

〈ψγ |P(dq)HIP (dq ′)|ψγ 〉 = N2〈ψ |P(dq)HIP (dq ′)|ψ〉, (A.8)

and so σψγ = σψ .
(f) To arrive at (11), simply observe that

P
ψγ

(Qt ∈ dq) = 〈ψγ |P(dq)|ψγ 〉 = 1{g=γ }(q)N2〈ψ |P(dq)|ψ〉
and

P
ψ(Qt ∈ dq|g(Qt) = γ ) = 〈ψ |P(dq ∩ g−1(γ ))|ψ〉

〈ψ |P(g−1(γ ))|ψ〉 ,

which is the same because

P(dq ∩ g−1(γ )) = 1{g=γ }(q)P (dq) and N = 〈ψ |P(g−1(γ ))|ψ〉−1/2.

Now (1) follows from (9) and (11) by considering for µψ the mixture (12). �

Proof of proposition 2. If g(Qt) is almost surely time-independent then its expectation

Eg(Qt) =
∫
Q

g(q)〈ψt |P(dq)|ψt 〉 = 〈ψt |G|ψt 〉 (A.9)

is time-independent, too. Thus,

0 = d

dt
〈ψt |G|ψt 〉 = 〈ψt | i

h̄
[H,G]|ψt 〉 (A.10)

for arbitrary initial ψ , and so [H,G] = 0. The converse implication was established above
under (d). �

Proof of proposition 3. If σψ(dq|q ′) = 0, and thus (replacing if necessary q ↔ q ′)
Im〈ψ |P(dq)HIP (dq ′)|ψ〉 = 0 for all ψ , then P(dq)HIP (dq ′) is Hermitian. Thus, for
B,B ′ ⊆ Q, P (B)HIP (B ′) = P(B ′)HIP (B), and for B ′ = Q we obtain [HI , P (B)] = 0.
Conversely, if [HI , P (B)] = 0 then we have for disjoint volume elements dq and dq ′ that
〈ψ |P(dq)HIP (dq ′)|ψ〉 = 〈ψ |P(dq)P (dq ′)HI |ψ〉 = 0 and thus σψ(dq|q ′) = 0. �
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Proof of proposition 4. To begin with, let us make explicit that along with the decomposition
of the Hilbert space, H = Hsys ⊗ Henv we also intend that the configuration observable is
formed from the configuration observables of sys and env,

P(Bsys × Benv) = Psys(Bsys) ⊗ Penv(Benv). (A.11)

We first show that (24) implies that only those self-adjoint operators Asys on Hsys can
correspond to observables that satisfy [G,Asys] = 0. We do this by showing that for any
state vector ψ of sys, the vector exp(iGs)ψ with any s ∈ R leads to the same probability
distribution as ψ of the result for every executable experiment, which implies that operators
Asys that do not commute with G cannot ‘be measured.’

To see this, suppose that the composite sys + env starts with state vector �0(s) =
exp(iGs)ψ ⊗ φ for some φ ∈ Henv and evolves during the experiment to �t(s) =
exp(iHt)�0(s). If B

(α)
env denotes the region in the configuration space of env in which the

meter displays the outcome α of the experiment, the probability of the outcome α is

Probs(α) = 〈�t(s)|
[
1sys ⊗ Penv

(
B(α)

env

)]|�t(s)〉. (A.12)

By (24), G ⊗ 1env commutes with H given by (23), and thus �t(s) = [exp(iGs) ⊗ 1env]�t(0).
Therefore,

Probs(α) = 〈�t(0)|[exp(−iGs) ⊗ 1env]
[
1sys ⊗ Penv

(
B(α)

env

)]
[exp(iGs) ⊗ 1env]|�t(0)〉

= 〈�t(0)|[1sys ⊗ Penv

(
B(α)

env

)]|�t(0)〉 = Prob0(α),

independently of s, which is what we wanted to show.
As a consequence, a weak superselection rule holds for G: a state vector ψ ∈ Hsys is

empirically indistinguishable from the statistical mixture µψ given by (12). Indeed, we have
seen that ψ is empirically indistinguishable from exp(iGs)ψ for any s ∈ R, and thus from
any mixture of these, e.g., with s uniformly distributed in [0, S]. But in the limit S → ∞, the
density matrix of this mixture converges, by standard decoherence theory, according to

ρS = 1

S

∫ S

0
ds eiGs |ψ〉〈ψ | e−iGs S→∞−−−−→

∑
γ

PG(γ )|ψ〉〈ψ |PG(γ ) = ρψ, (A.13)

which is the density matrix (13) of the mixture (12). Since ensembles with the same density
matrix are empirically indistinguishable, so are ψ and µψ .

As an alternative argument, suppose an experiment corresponding to an observable
A = Asys is performed on ‘sys’, and suppose for simplicity that A has a pure point spectrum,
so that its spectral decomposition is A = ∑

α αPA(α) with spectral projections PA(α). Then
the probability of result α is 〈ψ |PA(α)|ψ〉, which coincides with the probability of result α

from the mixture (12), tr(PA(α)ρψ) = ∑
γ 〈ψ |PG(γ )PA(α)PG(γ )|ψ〉, because PA(α) and

PG(γ ) commute. �

Proof of proposition 5. By [G,H ] = 0, the mixture µψ given by (12) evolves during t units
of time into µψt . By [G,P (dq)] = 0 and thus [PG(γ ), P (dq)] = 0, µψt yields the same
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distribution of the configuration as ψt , namely∫
S(H )

µψt (dφ)〈φ|P(dq)|φ〉 = tr(P (dq)ρψt )

=
∑

γ

〈ψt |PG(γ )P (dq)PG(γ )|ψt 〉 = 〈ψt |P(dq)|ψt 〉

using (13). Since the outcome of any experiment is read off from the configuration Qt at some
time t, the fact that the distribution of Qt is the same for ψ and µψ implies that the distribution
of the outcome is the same for the two, so that the experiment cannot distinguish the two. �

Proof of proposition 6. The distribution of the first n flashes arising from the mixture (12) is∑
γ

‖PG(γ )ψ‖2
P

ψγ

n (x1, t1, . . . ,xn, tn)

=
∑

γ

〈PG(γ )ψ |Wt1−t0(x1)
1/2 · · ·(x1)

1/2Wt1−t0 |PG(γ )ψ〉. (A.14)

Since, by (28), [G,Wt ] = 0 and [G,(x)1/2] = 0, and therefore [PG(γ ),Wt ] = 0 and
[PG(γ ),(x)1/2] = 0, this quantity equals∑

γ

〈ψ |PG(γ )Wt1−t0(x1)
1/2 · · · (x1)

1/2Wt1−t0 |ψ〉

= 〈ψ |Wt1−t0(x1)
1/2 · · · (x1)

1/2Wt1−t0 |ψ〉 = P
ψ
n (x1, t1, . . . ,xn, tn), (A.15)

the distribution arising from ψ . �
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